Eclipse Cargo Tracker - Applied Domain-Driven
Design Blueprints for Jakarta EE

Project Overview:

The Eclipse Cargo Tracker application is a reference implementation of a Domain-Driven Design (DDD)
shipping logistics system. It demonstrates the implementation of a real-world cargo tracking system using
Jakarta EE technologies. The application allows shipping companies to book, route, track, and handle cargo
throughout its journey from origin to destination.

The system is designed to showcase how DDD principles can be applied to create a maintainable, scalable, and
business-focused application. It provides functionality for booking new cargo, selecting routes, registering
handling events, and tracking cargo in real-time.

Date of creation: 2025-04-06

Author: Automatically generated by QuantalQ

Project Version: fb3cbel

Link to Project: https://github.com/eclipse-eedj/cargotracker

https://www.quantalq.com
https://github.com/eclipse-ee4j/cargotracker

Contents

Eclipse Cargo Tracker - Applied Domain-Driven Design Blueprints for Jakarta EE 2
Introduction L e 2
OVEIVIEW . . o o e e e 2
Purpose of the Software 2
SCOPE . v 2
Target Audience L e 2
Glossary o e e e 2
Getting Started L L 4
Installation Guide L 4
System Requirements 4
Quick Start / First Runo e 5
Prerequisites L L 5
Architecture and Design Overview e 5
System Architecture L 5
User Guide o 0 7
Features Overview 7
User Interface Guide 8
Step-by-Step Tutorials oL 9
Usage Scenarios / Use Cases.ottt i 10
Troubleshooting Common Issues 11
Developer Guide L 11
Codebase OVerview e 11
Folder Structure & Key Components 12
Installation for Development L 13
Build and Deployment Process 13
Coding Standards and Conventions 14

API Documentation 14
Database Schema and Interaction L L 16
Testing e 18
Testing Strategy Overview oL e 18
Types of Tests o o 18
Running Tests Locally o 19
Continuous Integration & Testing 19
Known Issues and Test Results o 19
Configuration and Deployment oL 20
Configuration Managemento 20
Deployment Guide L 20
Scaling Considerations e 21
Backup and Restore Procedures 21
Integration and APIS L e e 22
API Endpoints Documentation 22
External Integrations and Dependencies L L oo 23
Authentication and Authorization. L 23
Webhooks and Callback Interfaces 23
Data Exchange Formats o 23
SeCurity e 24
Security Assets Inventory L 24
Security Guidelines L e 24
License and Legal Information 25
Software Licensing e 25
Contribution Guidelines L 25
Copyright Notices 0 o e 25
Appendix . . .o 25
References L 25

Automatically generated by QuantalQ 1 of 26 April 6, 2025

https://www.quantalq.com

List of Hlustrations o o 25
Additional Resources and Further Reading oL 25

Automatically generated by QuantalQ 2 of 26 April 6, 2025

https://www.quantalq.com

Eclipse Cargo Tracker - Applied Domain-Driven Design Blueprints
for Jakarta EE

Introduction
Overview

The Eclipse Cargo Tracker application is a reference implementation of a Domain-Driven Design (DDD) shipping
logistics system. It demonstrates the implementation of a real-world cargo tracking system using Jakarta EE
technologies. The application allows shipping companies to book, route, track, and handle cargo throughout its
journey from origin to destination.

The system is designed to showcase how DDD principles can be applied to create a maintainable, scalable,
and business-focused application. It provides functionality for booking new cargo, selecting routes, registering
handling events, and tracking cargo in real-time.

Purpose of the Software

Eclipse Cargo Tracker serves as a practical example of applying Domain-Driven Design principles to a complex
business domain. It aims to:

e Demonstrate the implementation of DDD patterns and practices in a Jakarta EE environment
e Provide a reference architecture for enterprise applications

e Showcase the integration of various Jakarta EE technologies

e Serve as an educational tool for developers learning DDD and Jakarta EE

The application models the core business processes of cargo shipping and tracking, focusing on the essential
domain concepts while abstracting away non-essential details.

Scope
The Cargo Tracker application covers the following key areas:

e Cargo booking and routing

o Handling event registration through multiple interfaces (web, mobile, REST, file)
e Cargo tracking and status monitoring

e Real-time updates of cargo status

The application does not include:

o Billing and payment processing

o Customer management

¢ Vessel management beyond basic voyage scheduling
¢ Crew management

e Detailed logistics planning

Target Audience
This documentation is intended for:

o Software architects who want to understand the overall structure and design of the application

o Software engineers who need to use, modify, or extend the system

o Technical leads evaluating DDD and Jakarta EE for enterprise applications

e Developers interested in learning about DDD implementation patterns

¢ System integrators who need to connect external systems with the Cargo Tracker application

e Product owners or product managers who would like to understand the product on a more technical level

Glossary

Automatically generated by QuantalQ 3 of 26 April 6, 2025

https://www.quantalq.com

Term/Acronym

Full Form

Description

Aggregate

API

Arquillian

CDI

DDD

DTO

EJB

Entity
JAX-RS

JMS

JPA

JSF

JUnit

MDB

Repository

REST

ShrinkWrap

Specification

Automatically generated by QuantalQ

Aggregate Pattern

Application Programming
Interface

Contexts and Dependency
Injection

Domain-Driven Design

Data Transfer Object

Enterprise JavaBeans

Entity Pattern
Jakarta RESTful Web Services

Jakarta Messaging

Jakarta Persistence API

JavaServer Faces

Java Unit Testing Framework

Message-Driven Bean

Repository Pattern

Representational State
Transfer

Specification Pattern

4 of 26

A cluster of domain objects that can
be treated as a single unit, with the
aggregate root being the entity
through which all access occurs

A set of rules and protocols for
building and interacting with
software applications

A testing platform that allows for
in-container testing of Java EE
applications

A Jakarta EE technology for
dependency injection and contextual
lifecycle management

A software development approach
focusing on modeling software to
match a domain according to input
from domain experts

An object that carries data between
processes or layers in an application
A server-side component
architecture for modular
construction of enterprise
applications

An object defined primarily by its
identity rather than its attributes
A Jakarta EE API for creating
RESTful web services

A Java API that allows applications
to create, send, receive, and read
messages in a distributed system

A Java specification for managing
relational data in Java applications
A Jakarta EE technology for
building component-based user
interfaces for web applications

A popular testing framework for
Java applications

An enterprise bean that allows
Jakarta EE applications to process
messages asynchronously

A mechanism for encapsulating
storage, retrieval, and search
behavior

An architectural style for
distributed hypermedia systems,
commonly used for web services

A Java API for creating archives
like JAR, WAR, and EAR without
using file system

A pattern that separates the
statement of how to match a
candidate from the candidate object

April 6, 2025

https://www.quantalq.com

Term/Acronym Full Form Description

SSE Server-Sent Events A server push technology enabling a
client to receive automatic updates
from a server via HT'TP connection

UN/LOCODE United Nations Code for Trade A geographic coding scheme

and Transport Locations developed and maintained by the
United Nations to identify locations
related to international trade

Value Object Value Object Pattern An immutable object that is
distinguishable only by the state of
its properties

For a comprehensive glossary of all terms used across the Cargo Tracker documentation, see Consoli-
dated Glossary.

Getting Started
Installation Guide

To install and run the Cargo Tracker application, follow these steps:

Prerequisites Before installing the Cargo Tracker application, ensure you have the following prerequisites:

o Java Development Kit (JDK) 11 or later

e Maven 3.6.0 or later

e Git client

o Docker (optional, for containerized deployment)

Installation Steps
1. Clone the repository:
[] git clone https://github.com/eclipse-eedj/cargotracker.git cd cargotracker
2. Build the application:
[| mvn clean package

3. Deploy to a Jakarta EE server: You can deploy the application to any Jakarta EE 9+ compatible
application server. The project includes configuration for Liberty:

[| mvn liberty:run

4. Docker deployment (optional): The project includes a Dockerfile for containerized deployment:
[| docker build -t cargo-tracker . docker run -p 9080:9080 -p 9443:9443 cargo-tracker

5. Access the application: Once deployed, the application can be accessed at:

http://localhost:9080/cargo-tracker/

System Requirements
Minimum Requirements

¢ Processor: Dual-core CPU, 2 GHz or faster

e Memory: 4 GB RAM

e Disk Space: 1 GB available space

e Operating System: Any OS that supports Java (Windows, macOS, Linux)
e Java: JDK 11 or later

o Database: Any database supported by JPA (H2 included for development)

Automatically generated by QuantalQ 5 of 26 April 6, 2025

https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/QQ_SD_Doc_Glossary.pdf
https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/QQ_SD_Doc_Glossary.pdf
https://www.quantalq.com

Recommended Requirements

¢ Processor: Quad-core CPU, 2.5 GHz or faster

e Memory: 8 GB RAM

o Disk Space: 2 GB available space

e Operating System: Linux (preferred for production)
e Java: JDK 17 or later

« Database: PostgreSQL or Oracle for production use

Quick Start / First Run
After installing the application, follow these steps to get started:

1. Access the application at http://localhost:9080/cargo-tracker/
2. Explore the public tracking interface:
e Navigate to the “Public Tracking” section
o Enter one of the sample tracking IDs (e.g., ABC123)
e View the cargo’s current status and history
3. Explore the admin interface:
¢ Navigate to the “Administration” section
e View the dashboard showing all cargo
e Try booking a new cargo:
— Click “Book” in the navigation menu
— Enter origin, destination, and arrival deadline
— Submit the booking form
Note the tracking ID for future reference
4. Register a handling event:
o Navigate to the “Event Logger” section
e Select the cargo you just booked
¢ Choose an event type (e.g., RECEIVE)
e Select a location
e Set the completion time
e Submit the event
5. Track the cargo again to see the updated status based on the handling event you registered

Prerequisites
Before using the Cargo Tracker application, you should have:

¢ Basic understanding of shipping and logistics concepts

o Familiarity with web applications

o Knowledge of Jakarta EE technologies (for developers)

o Understanding of Domain-Driven Design principles (for developers)

Architecture and Design Overview
System Architecture

The Cargo Tracker application follows a layered architecture based on Domain-Driven Design principles, with a
clear separation of concerns between different modules. The system is organized into four main layers:

Automatically generated by QuantalQ 6 of 26 April 6, 2025

https://www.quantalq.com

Cargo Tracker Architecture Overview

«boundary »
Cargo Tracker Application

«component»

«Component»

sComponents

Implements
interfaces defined
in domain

Uses interfaces
defined in domain

*Components

Integrates with

«boundary »
External Systems

«component»

Automatically generated by QuantalQ 7 of 26 April 6, 2025

https://www.quantalq.com

For more detailed information about the architecture, refer to the High-Level Documentation.

Domain Layer The domain layer is the core of the application, containing the business logic and rules of the
cargo shipping domain. It is organized into four main aggregates:

e Cargo Aggregate: Represents shipping cargo and its routing information

o« Handling Aggregate: Represents cargo handling events at various locations
o Location Aggregate: Represents shipping locations using UN/LOCODE

e Voyage Aggregate: Represents vessel voyages between locations

The domain layer also includes domain services and shared utilities:

¢ Routing Service: Provides routing capabilities for cargo
e Specification Pattern: Implements business rules as specifications

Application Layer The application layer serves as an intermediary between the domain model and external
interfaces. It handles use cases and coordinates domain operations through services:

¢ Booking Service: Handles cargo booking and routing operations
¢« Handling Event Service: Processes handling events for cargo
e Cargo Inspection Service: Inspects cargo status based on handling events

The application layer implements the following key responsibilities: - Coordinating the execution of domain
operations - Managing transactions - Handling application-specific validation - Coordinating with infrastructure
services - Publishing domain events

Infrastructure Layer The infrastructure layer provides the technical capabilities and implementations that
support the domain model:

« Events: CDI-based event infrastructure for domain events

¢ Logging: Logging capabilities through CDI producer methods

e Messaging: Asynchronous messaging using JMS for domain events

« Persistence: Repository implementations using JPA for data persistence
e Routing: Adapter to an external routing service (PathFinder)

The infrastructure layer implements the interfaces defined in the domain layer, providing concrete implementations
for: - Repository interfaces - Domain services that require external resources - Technical services like messaging
and logging

Interfaces Layer The interfaces layer provides user-facing and system-facing interfaces for the application:

¢ Booking Interfaces: Web interfaces and facades for booking and routing cargo
« Handling Interfaces: File processing, mobile interfaces, and REST APIs for handling events
e Tracking Interfaces: Web interfaces for tracking cargo, including real-time updates via SSE

The interfaces layer is responsible for: - Transforming between domain objects and presentation models (DTOs)
- Handling user input and validation - Rendering views and responses - Integrating with external systems

User Guide
Features Overview
The Cargo Tracker application provides several key features for managing and tracking cargo:

Cargo Booking The cargo booking feature allows shipping clerks to register new cargo for transport. It
captures essential information such as:

« Origin location (using UN/LOCODE)
o Destination location (using UN/LOCODE)
 Arrival deadline

Automatically generated by QuantalQ 8 of 26 April 6, 2025

https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/QQ_HL_Doc_CarcoTracker.pdf
https://www.quantalq.com

Upon successful booking, the system generates a unique tracking ID that can be used to track the cargo
throughout its journey.

Cargo Routing Once a cargo is booked, it needs to be assigned a route. The routing feature allows shipping
clerks to:

e View cargos that need routing

¢ Request possible routes for a cargo

e Select and assign the most appropriate route

o View the legs of the selected route (voyage, from location, to location, loading time, unloading time)

Cargo Tracking The tracking feature allows customers and shipping clerks to track the progress of cargo:

o Public tracking interface for customers

e Administrative tracking interface with more details for shipping clerks

¢ Real-time tracking updates via Server-Sent Events

e Map visualization of cargo location

« Status information (Not Received, In Port, Onboard Carrier, Claimed, Unknown)
o Handling history

Handling Event Registration The application provides multiple interfaces for registering handling events:

e Mobile web interface for cargo handlers
« REST API for external systems
o File upload for batch processing

Handling events include:

o RECEIVE (receiving cargo at a location)

e LOAD (loading cargo onto a voyage)

e UNLOAD (unloading cargo from a voyage)

o CUSTOMS (customs clearance)

e CLAIM (customer claiming cargo at destination)

Cargo Management The application provides features for managing cargo after it has been booked:

¢ Change destination

¢ Change arrival deadline

e View cargo details

« List all cargo with different filtering options (routed, not routed, claimed)

User Interface Guide

The Cargo Tracker application provides several user interfaces for different user roles:

Public Tracking Interface The public tracking interface is accessible to customers and allows them to track
their cargo using a tracking ID.

Key elements:

e Tracking ID input field
e Track button

e Cargo status display

e Map visualization

Administrative Dashboard The administrative dashboard provides an overview of all cargo in the system
and is intended for shipping company staff.

Key elements:

Automatically generated by QuantalQ 9 of 26 April 6, 2025

https://www.quantalq.com

APPIEHESOMdin-Drive

\

Figure 1: Public Tracking Interface

o Navigation menu (Dashboard, Book, Track)
o Cargo lists (Not Routed, Routed, Claimed)
o Action buttons (Route, Details, Change Destination, Change Deadline)

Booking Interface The booking interface allows shipping clerks to register new cargo.
Key elements:

¢ Origin location dropdown

e Destination location dropdown
e Arrival deadline date picker

o Book button

Event Logger The event logger interface allows cargo handlers to register handling events.
Key elements:

e Cargo selection dropdown

o Event type selection

o Location selection

« Voyage selection (for LOAD and UNLOAD events)
e Completion time input

e Submit button

Step-by-Step Tutorials
How to Book New Cargo

Navigate to the “Administration” section

Click “Book” in the navigation menu

Select the origin location from the dropdown

Select the destination location from the dropdown
Choose the arrival deadline using the date picker

Click “Book” to submit the booking

Note the tracking ID displayed on the confirmation page

N oE W

How to Route Cargo

1. Navigate to the “Administration” section

2. Click “Dashboard” in the navigation menu

3. Find the cargo you want to route in the “Not Routed” list
4. Click the “Route” button for that cargo

Automatically generated by QuantalQ 10 of 26

April 6, 2025

https://www.quantalq.com

5. The system will display possible routes
6. Review the routes and select the most appropriate one
7. Click “Assign” to assign the selected route to the cargo

How to Register a Handling Event

Navigate to the “Event Logger” section

Select the cargo from the dropdown

Choose the event type (RECEIVE, LOAD, UNLOAD, CUSTOMS, CLAIM)
Select the location

If the event type is LOAD or UNLOAD, select the voyage

Set the completion time

Click “Submit” to register the event

No otk W

How to Track Cargo

Navigate to the “Public Tracking” section

Enter the tracking ID in the input field

Click “Track”

View the cargo’s current status, location, and handling history
Click “Show on Map” to see the cargo’s location on a map

GU o=

Usage Scenarios / Use Cases

Scenario 1: Booking and Routing Cargo A shipping clerk needs to book a new cargo shipment from
Hong Kong to Stockholm with a deadline of 3 months from now.

—_

The clerk accesses the booking interface

Selects “CNHKG” (Hong Kong) as the origin

Selects “SESTO” (Stockholm) as the destination

Sets the arrival deadline to 3 months from today

Submits the booking

The system generates a tracking ID

The clerk accesses the dashboard and finds the new cargo in the “Not Routed” list
The clerk clicks “Route” to request possible routes

The system displays several route options with different voyages

The clerk selects the route that best meets the customer’s needs

The system assigns the route to the cargo and updates its status to “Routed”

AN B B e

— =

Scenario 2: Tracking Cargo Through Its Journey A customer wants to track their cargo from Hong
Kong to Stockholm.

1. The customer accesses the public tracking interface
2. Enters their tracking ID
3. The system displays the cargo’s current status, location, and handling history
4. As the cargo progresses through its journey, handling events are registered:
« RECEIVE at Hong Kong
¢ LOAD onto voyage V100 at Hong Kong
e UNLOAD from voyage V100 at Hamburg
e« LOAD onto voyage V200 at Hamburg
e« UNLOAD from voyage V200 at Stockholm
e« CLAIM at Stockholm
5. Each time the customer checks the tracking, they see the updated status and location

Scenario 3: Changing Cargo Destination A shipping clerk needs to change the destination of a cargo
from Stockholm to Helsinki due to a customer request.

1. The clerk accesses the dashboard

Automatically generated by QuantalQ 11 of 26 April 6, 2025

https://www.quantalq.com

Finds the cargo in the list

Clicks “Change Destination”

Selects “FTHEL” (Helsinki) as the new destination

Submits the change

The system updates the cargo’s route specification with the new destination
If the cargo was already routed, it is marked as misrouted

The clerk can then route the cargo again to find a suitable route to Helsinki

e A o

Troubleshooting Common Issues
Issue: Cargo Not Found When Tracking Possible causes:

e Incorrect tracking ID entered
e Cargo not yet registered in the system

Solution:

e Verify the tracking ID is correct
e Check with the shipping clerk if the cargo has been booked

Issue: No Routes Available for Cargo Possible causes:

e No voyages available between the origin and destination
e Arrival deadline too soon to accommodate available voyages

Solution:

e Try extending the arrival deadline
e Check if alternative destinations are acceptable

Issue: Handling Event Registration Fails Possible causes:

o Invalid cargo tracking ID

¢ Invalid location code

e Invalid voyage number

o Incompatible event type and voyage (e.g., RECEIVE with a voyage)

Solution:

e Verify all input data is correct
e Ensure the event type is compatible with the provided information
e Check that the cargo exists in the system

Issue: Real-time Tracking Updates Not Working Possible causes:

e Browser does not support Server-Sent Events
o Network issues preventing SSE connection

Solution:

e Try using a modern browser (Chrome, Firefox, Safari, Edge)
e Check network connectivity
e Refresh the page to reestablish the SSE connection

Developer Guide
Codebase Overview

The Cargo Tracker codebase is organized according to Domain-Driven Design principles, with a clear separation
between layers:

Automatically generated by QuantalQ 12 of 26 April 6, 2025

https://www.quantalq.com

src/main/java/org/eclipse/cargotracker/

application/ # Application services
internal/ # Service implementations
util/ # Application utilities
domain/ # Domain model
model/ # Domain entities and value objects
cargo/ # Cargo aggregate
handling/ # Handling aggregate
location/ # Location aggregate
voyage/ # Voyage aggregate
service/ # Domain services
shared/ # Shared domain utilities
infrastructure/ # Infrastructure implementations
events/ # Event infrastructure
logging/ # Logging infrastructure
messaging/ # Messaging infrastructure
persistence/ # Persistence infrastructure
routing/ # Routing infrastructure
interfaces/ # User and system interfaces
booking/ # Booking interfaces
facade/ # Booking facade
sse/ # Server-sent events
web/ # Web interface
handling/ # Handling interfaces
file/ # File upload
mobile/ # Mobile interface
rest/ # REST API
tracking/ # Tracking interfaces
web/ # Web interface

The codebase follows a package-by-feature structure within each layer, making it easy to locate and understand
the components related to each feature.

Folder Structure & Key Components
Application Layer

o ApplicationEvents.java: Interface for application events

« BookingService.java: Interface for booking services

e CargolnspectionService.java: Interface for cargo inspection

o« HandlingEventService.java: Interface for handling events

o internal/: Contains implementations of the service interfaces

o util/: Contains utilities like ApplicationSettings and DateConverter

Domain Layer

o model/cargo/: Contains the Cargo aggregate (Cargo, Itinerary, Leg, RouteSpecification, etc.)
o model/handling/: Contains the Handling aggregate (HandlingEvent, HandlingHistory, etc.)
» model/location/: Contains the Location aggregate (Location, UnLocode)

« model/voyage/: Contains the Voyage aggregate (Voyage, VoyageNumber, Schedule, etc.)
 service/: Contains domain services like RoutingService

o shared/: Contains shared utilities like Specification pattern implementations

Infrastructure Layer

« events/: Contains CDI event infrastructure
 logging/: Contains logging infrastructure
» messaging/: Contains JMS messaging infrastructure

Automatically generated by QuantalQ 13 of 26 April 6, 2025

https://www.quantalq.com

o persistence/: Contains JPA repository implementations
o routing/: Contains the external routing service adapter

Interfaces Layer

« booking/facade/: Contains the booking service facade

o booking/sse/: Contains server-sent events for real-time tracking
o booking/web/: Contains web interfaces for booking

o handling/file/: Contains file upload handling

« handling/mobile/: Contains mobile interfaces for handling

o handling/rest/: Contains REST API for handling
 tracking/web/: Contains web interfaces for tracking

Installation for Development
To set up a development environment for the Cargo Tracker application:
1. Clone the repository:
[] git clone https://github.com/eclipse-eedj/cargotracker.git cd cargotracker
2. Import the project into your IDE:

o For Eclipse: File > Import > Maven > Existing Maven Projects
o For IntelliJ IDEA: File > Open > Select the project directory

3. Build the project:
[| mvn clean install

4. Run the application in development mode:
[| mvn liberty:dev

5. Access the application:

o http://localhost:9080/cargo-tracker/

Build and Deployment Process
Building the Application To build the Cargo Tracker application:
[mvn clean package

This will:

e Compile the Java source code

e Process resources

e Run unit tests

« Package the application as a WAR file in the target directory

Deployment Options

Liberty Server The project includes configuration for Open Liberty:
[| # Run with Liberty mvn liberty:run

Run in development mode with hot reloading mvn liberty:dev

Docker Deployment The project includes a Dockerfile for containerized deployment:
[| # Build the Docker image docker build -t cargo-tracker .
Run the container docker run -p 9080:9080 -p 9443:9443 cargo-tracker

Automatically generated by QuantalQ 14 of 26

April 6, 2025

https://www.quantalq.com

Manual Deployment You can deploy the generated WAR file to any Jakarta EE 94 compatible application
server:

1. Build the application: mvn clean package
2. Locate the WAR file in the target directory
3. Deploy the WAR file to your application server according to its documentation

Coding Standards and Conventions

The Cargo Tracker application follows these coding standards and conventions:

Java Code Style

e« Naming Conventions:
Classes: PascalCase (e.g., CargoRepository)
— Interfaces: PascalCase (e.g., RoutingService)
Methods: camelCase (e.g., findByTrackingId)
Variables: camelCase (e.g., trackingId)
— Constants: UPPER_ SNAKE_ CASE (e.g., DEFAULT_DEADLINE_DAYS)
o Package Structure:
— Follows DDD layering: domain, application, infrastructure, interfaces
— Package names are all lowercase (e.g., org.eclipse.cargotracker.domain.model.cargo)
¢ Code Organization:
— One primary class or interface per file
— Related classes (like inner classes) in the same file
— Static imports used sparingly

Documentation Standards

o Javadoc:
— All public classes and methods should have Javadoc comments
— Include @param, @return, and @throws tags where applicable
e Code Comments:
— Use comments to explain “why” not “what”
— Complex algorithms should be documented
— TODO comments should include a description of what needs to be done

Domain-Driven Design Conventions

e Ubiquitous Language:
— Use consistent terminology throughout the codebase
— Class and method names should reflect domain concepts
o Apggregates:
— Clearly defined aggregate roots (Cargo, HandlingEvent, Location, Voyage)
— Aggregates accessed only through their roots
e Value Objects:
— Immutable
— Equality based on attributes, not identity
— No side effects

API Documentation

The Cargo Tracker application exposes several APIs for integration with external systems:

REST APIs

Automatically generated by QuantalQ 15 of 26 April 6, 2025

https://www.quantalq.com

Handling Report API
o Endpoint: POST /handling/reports
e Description: Registers a handling event for cargo
e Consumes: application/json, application/xml
¢ Request Body:

[{ "completionTime": "2023-04-01T12:00:00", "trackingId": "ABC123", "eventType": "LOAD", "unLocode":
"USNYC'", "voyageNumber": "V100" }

o Response: HTTP 204 No Content (success), HTTP 400 Bad Request (validation error)

PathFinder API
o Endpoint: GET /graph-traversal/shortest-path
e Description: Finds possible routes between two locations
e Parameters:

— origin: UN/LOCODE of the origin location
— destination: UN/LOCODE of the destination location
— deadline: Deadline for arrival (YYYYMMDD format)

e Produces: application/json, application/xml
o Example Request: /graph-traversal/shortest-path?origin=CNHKG&destination=USNYC&deadline=20230501

« Example Response:

[] [{ "edges": [{ "voyageNumber": "V100", "fromUnLocode": "CNHKG", "toUnLocode": "USNYC',
"fromDate": "2023-04-01T12:00:00", "toDate": "2023-04-15T12:00:00" } | }]

Application Services

BookingService Key methods:

e bookNewCargo(origin, destination, arrivalDeadline): Books a new cargo

e requestPossibleRoutesForCargo (trackingId): Requests possible routes for a cargo
o assignCargoToRoute(trackingId, itinerary): Assigns a route to a cargo

o changeDestination(trackingId, destination): Changes the destination of a cargo
o changeDeadline(trackingId, deadline): Changes the deadline of a cargo

HandlingEventService Key methods:

o registerHandlingEvent (completionTime, trackingId, voyageNumber, unLocode, type): Regis-
ters a handling event

CargolnspectionService Key methods:

e inspectCargo(trackingId): Inspects a cargo to update its status

Domain Model The domain model exposes several key entities and value objects:

e Cargo: Represents a cargo shipment

e Itinerary: Represents a planned route for a cargo

¢« HandlingEvent: Represents a handling event for a cargo
o Location: Represents a location with a UN/LOCODE

e Voyage: Represents a voyage between locations

Automatically generated by QuantalQ 16 of 26 April 6, 2025

https://www.quantalq.com

Database Schema and Interaction

The Cargo Tracker application uses JPA for database interaction. The main entities and their relationships are:

Automatically generated by QuantalQ 17 of 26 April 6, 2025

https://www.quantalq.com

® HandlingEvent

id : Long

event_type : String
completion_time : Date
registration_time : Date
location_id © Long
voyage_id : Long
cargo_id : Long

0. 0.* 0.*

for

® Cargo

id : Long

tracking_id : String

origin_id : Long
spec_origin_id : Long
spec_destination_id : Long
spec_arrival_deadline : Date
transport_status : String
routing_status : String
calculated_at : Date
last_ewent_id : Long
last_known_location_id : Long
current_voyage_id : Long

has on

® Leg

id : Long

cargo_id : Leng
woyage_id : Long
load_location_id : Long
unload_lecation_id : Long
load_time : Date
unload_time : Date
leg_index : Integer

|

0. 0.# 0.*

Uses at

® Voyage

id : Long
wvoyage_number : String

loads at unloads at has
0,.*

\ @ CarrierMovement

id . Long

voyage_id : Long
departure_location_id : Long
arrival_location_id : Long
departure_time : Date
arrival_time : Date
crm_index : Integer

0., 0.
arrives at /departs from
]\l 1

@ Location

id : Long
name ; String
unlocode : String

Automatically generated by QuantalQ 18 of 26 April 6, 2025

https://www.quantalq.com

The application uses JPA repositories to interact with the database:

e CargoRepository: Manages Cargo entities

¢« HandlingEventRepository: Manages HandlingEvent entities
¢ LocationRepository: Manages Location entities

¢ VoyageRepository: Manages Voyage entities

These repositories are defined as interfaces in the domain layer and implemented in the infrastructure layer using
JPA.

Testing
Testing Strategy Overview

The Cargo Tracker application employs a multi-layered testing strategy to ensure quality and correctness:

Cargo Tracker Testing Strategy

«boundary »
Testing Strategy
[Container]

«component» «component» «component» «component»

[Container]

|

|

|

|

|

|

«COmponents

| «components «components «Components
|

|

|

|

|

|

|

Types of Tests

The Cargo Tracker application includes several types of tests:

Unit Tests Unit tests focus on testing individual components in isolation:

¢ Domain Model Tests: Verify the behavior of domain entities, value objects, and aggregates.

o Application Service Tests: Verify the behavior of application services with mocked dependencies.

¢ Infrastructure Component Tests: Verify the behavior of infrastructure components with mocked
dependencies.

Key unit test files:

e CargoTest. java: Tests for the Cargo entity

o ItineraryTest.java: Tests for the Itinerary value object

e RouteSpecificationTest.java: Tests for the RouteSpecification value object
e HandlingEventTest. java: Tests for the HandlingEvent entity

e BookingServiceTest.java: Tests for the BookingService

Integration Tests Integration tests verify the interaction between components:

o Application Layer Integration Tests: Test application services with real dependencies.
¢ Infrastructure Layer Integration Tests: Test infrastructure components with real dependencies.

Automatically generated by QuantalQ 19 of 26 April 6, 2025

https://www.quantalq.com

¢ Repository Tests: Verify the persistence layer with a test database.
Key integration test files:

o ExternalRoutingServiceTest. java: Tests for the external routing service integration

Scenario Tests Scenario tests verify complete business scenarios:

e End-to-End Tests: Test the entire application flow from user interface to database.
« Business Process Tests: Verify that business processes work correctly across multiple components.

Key scenario test files:

e CargoLifecycleScenarioTest.java: Tests the complete cargo lifecycle from booking to delivery

API Tests API tests verify the external interfaces:

« REST API Tests: Verify the REST endpoints using SoapUI.
e SOAP API Tests: Verify the SOAP interfaces using SoapUI.

Key API test files:
e cargo_tracker_soapUI_project.xml: SoapUI project for testing REST APIs

Running Tests Locally

To run the tests locally:

[| # Run all tests mvn test

Run a specific test class mvn test -Dtest=CargoTest

Run a specific test method mvn test -Dtest=CargoTest#testRoutingStatus
To run the tests with code coverage:

[| mvn test jacoco:report

The coverage report will be generated in target/site/jacoco/index.html.

Continuous Integration & Testing
The Cargo Tracker application uses GitHub Actions for continuous integration and testing:

¢ Pull Request Builds: All tests are run when a pull request is opened or updated.
e« Main Branch Builds: All tests are run when changes are pushed to the main branch.
e Nightly Builds: Comprehensive test suites are run nightly to catch regressions.

The CI workflow is defined in .github/workflows/main.yml and includes:

¢ Building the application

o Running unit tests

e Running integration tests

e Deploying to a test environment

Known Issues and Test Results

The following issues have been identified in the testing process:

e HandlingEventService Testing: The HandlingEventServiceTest is incomplete and does not provide

adequate coverage.
e Web Interface Testing: Limited automated testing for the web interface.
e Error Handling Testing: Limited testing for error conditions and exception handling.
¢ Performance Testing: No automated performance testing.
e Security Testing: Limited security testing.

Automatically generated by QuantalQ 20 of 26 April 6, 2025

https://www.quantalq.com

Recent test results show good coverage for the domain model but gaps in the application services, infrastructure,
and interfaces layers.

Configuration and Deployment
Configuration Management

The Cargo Tracker application can be configured through various configuration files:

Application Configuration

e server.xml: Located in src/main/liberty/config/, this file configures the Liberty server, including:
— HTTP and HTTPS endpoints
— Database connections
— Security settings
— JMS resources
¢ bootstrap.properties: Located in src/main/liberty/config/, this file contains properties used during
server startup.
o persistence.xml: Located in src/main/resources/META-INF/, this file configures JPA persistence units.

Environment Variables The application can be configured using the following environment variables:

Variable Description Default Value
DB HOST Database host localhost

DB PORT Database port 5432
DB_NAME Database name cargotracker
DB__USER Database username postgres
DB_PASSWORD Database password postgres
HTTP_PORT HTTP port 9080
HTTPS_PORT HTTPS port 9443

Deployment Guide
Development Environment To deploy the application in a development environment:
1. Clone the repository:
[] git clone https://github.com/eclipse-eedj/cargotracker.git cd cargotracker
2. Build and run the application:
[| mvn liberty:dev
3. Access the application:

o http://localhost:9080/cargo-tracker/

Test Environment To deploy the application in a test environment:
1. Build the application:
[| mvn clean package
2. Deploy to a test server:
[| # Example for Liberty cp target/cargo-tracker.war /path/to/liberty/usr/servers/testServer/dropins/
3. Start the server:

[| /path/to/liberty /bin/server start testServer

Automatically generated by QuantalQ 21 of 26 April 6, 2025

https://www.quantalq.com

Production Environment To deploy the application in a production environment:
1. Build the application:
[| mvn clean package -P production
2. Configure the production server:

¢ Set up a database server (PostgreSQL recommended)
o Configure the application server with appropriate resources
e Set up HTTPS with proper certificates

3. Deploy the application:
[| # Example for Liberty cp target/cargo-tracker.war /path/to/liberty/usr/servers/productionServer/dropins/
4. Start the server:

[] /path/to/liberty/bin/server start productionServer

Scaling Considerations

The Cargo Tracker application can be scaled in several ways:

Horizontal Scaling
e Multiple Application Instances: Deploy multiple instances of the application behind a load balancer.
¢ Session Replication: Configure session replication between instances for seamless failover.
o Stateless Design: The application is designed to be stateless, making it suitable for horizontal scaling.
Vertical Scaling
¢ Increase Resources: Allocate more CPU, memory, and disk space to the application server.
o Database Optimization: Optimize database queries and indexes for better performance.
Caching

¢ Second-Level Cache: Configure JPA second-level cache for frequently accessed data.
e Application-Level Cache: Implement caching for expensive operations like route calculation.

Backup and Restore Procedures
Database Backup
1. Regular Backups: Schedule regular database backups using database-specific tools.
[| # Example for PostgreSQL pg_dump -U postgres -F ¢ -b -v -f cargotracker backup.dump cargotracker

2. Transaction Log Backups: For point-in-time recovery, configure transaction log backups.

Application Backup

1. Configuration Backup: Back up all configuration files:
e src/main/liberty/config/server.xml
e src/main/liberty/config/bootstrap.properties
e src/main/resources/META-INF/persistence.xml
2. Custom Data Backup: If the application uses file-based storage for any custom data, back up those files.

Restore Procedure
1. Database Restore:
[| # Example for PostgreSQL pg restore -U postgres -d cargotracker -v cargotracker_backup.dump
2. Application Restore:

Automatically generated by QuantalQ 22 of 26 April 6, 2025

https://www.quantalq.com

¢ Restore configuration files
¢ Redeploy the application WAR file
¢ Restart the application server

Integration and APIs
API Endpoints Documentation

The Cargo Tracker application exposes several API endpoints for integration with external systems:

Handling Report API

o Endpoint: POST /handling/reports

e Description: Registers a handling event for cargo

e Consumes: application/json, application/xml

o Response: HTTP 204 No Content (success), HTTP 400 Bad Request (validation error)

Request Parameters:

Parameter Type Description Constraints
completionTime String When the handling event Required, ISO-8601 format
occurred (e.g., “2023-04-01T12:00:00”)
trackingld String The tracking ID of the cargo Required, minimum 4
characters
eventType String The type of handling event Required, one of: RECEIVE,

LOAD, UNLOAD,
CUSTOMS, CLAIM

unLocode String The UN location code where Required, exactly 5
the event occurred characters
voyageNumber String The voyage number (for LOAD Optional, 4-5 characters

and UNLOAD events)

Example Request (JSON):

[] { "completionTime": "2023-04-01T12:00:00", "trackingId": "ABC123", "eventType": "LOAD", "unLocode":
"USNYC'", "voyageNumber": "V100" }

Example Request (XML):

[| <?xml version="1.0" encoding="UTF-8"?> <handlingReport> <completionTime>2023-04-01T12:00:00< /completionTime>
<trackingld>ABC123< /trackingld> <eventType>LOAD< /eventType> <unLocode>USNYC</unLocode>
<voyageNumber>V100< /voyageNumber> </handlingReport>

PathFinder API

o Endpoint: GET /graph-traversal/shortest-path

e Description: Finds possible routes between two locations
e Produces: application/json, application/xml

e Response: List of possible transit paths

Request Parameters:

Parameter Type Description Constraints
origin String The UN location code of the Required, 5 characters,
origin format:

[a-zA-Z]{2} [a-zA-Z2-9]{3}

Automatically generated by QuantalQ 23 of 26 April 6, 2025

https://www.quantalq.com

Parameter Type Description Constraints

destination String The UN location code of the Required, 5 characters,
destination format:
[a-zA-Z]{2}[a-zA-Z2-9]{3}
deadline String The deadline for arrival Required, 8 characters

(YYYYMMDD format)

Example Request:
GET /graph-traversal/shortest-path?origin=CNHKG&destination=USNYC&deadline=20230501
Example Response (JSON):

[} [{ "edges": [{ "voyageNumber": "V100', "fromUnLocode": "CNHKG", "toUnLocode": "USNYC", "from-
Date": '2023-04-01T12:00:00", "toDate": "2023-04-15T12:00:00" } | }, { "edges": [{ "voyageNumber": "V200",
"fromUnLocode": "CNHKG", "toUnLocode": "JNTKOQ", "fromDate": "2023-04-01T12:00:00", "toDate": "2023-04-
05T12:00:00" }, { "voyageNumber": "V300", "fromUnLocode": "JNTKO", "toUnLocode": "USNYC", "fromDate":
'2023-04-06T12:00:00", "toDate": "2023-04-20T'12:00:00" } | }]

External Integrations and Dependencies
The Cargo Tracker application integrates with the following external systems:
PathFinder Service The PathFinder service is an external routing service that provides route planning

capabilities. It is integrated through the ExternalRoutingService class, which adapts the external service to
the RoutingService interface used by the domain layer.

Database The application requires a database for persistence. It is configured to work with any database
supported by JPA, with PostgreSQL recommended for production use.
Authentication and Authorization

Information not available: The current implementation of the Cargo Tracker application does not include explicit
authentication or authorization mechanisms. Security would typically be handled at the application or container
level.

‘Webhooks and Callback Interfaces

Information not available: The current implementation does not appear to include webhooks or callback interfaces
for external systems.

Data Exchange Formats

The Cargo Tracker application supports the following data exchange formats:

JSON Example of a handling report in JSON format:

[] { "completionTime": "2023-04-01T12:00:00", "trackingId": "ABC123", "eventType": "LOAD", "unLocode":
"USNYC'", "voyageNumber": "V100" }

XML Example of a handling report in XML format:

[| <?xml version="1.0" encoding="UTF-8"?> <handlingReport> <completionTime>2023-04-01T12:00:00< /completionTime>
<trackingld>ABC123< /trackingld> <eventType>LOAD< /eventType> <unLocode>USNYC</unLocode>
<voyageNumber>V100< /voyageNumber> </handlingReport>

Automatically generated by QuantalQ 24 of 26 April 6, 2025

https://www.quantalq.com

Security
Security Assets Inventory

The Cargo Tracker application contains several security-sensitive assets:

Asset Description Security Measure Assessment of Criticality
REST Handling Report Bean Validation for input Critical - No authentication/authorization
APIs API and PathFinder validation

API
Database Username and Stored in configuration files High - Default/weak credentials used
Creden- password for
tials database access
Cargo Information about Access through application Medium - No direct exposure, but no
Data cargo shipments services access control
Web User interfaces for None identified High - No authentication/authorization
Interfaces booking, tracking,

etc.

Security Guidelines

The Cargo Tracker application, as a reference implementation, has several security considerations that should be
addressed in a production environment:

Authentication and Authorization The current implementation does not include authentication or autho-
rization mechanisms for the REST APIs or web interfaces. In a production environment, these would be critical
components to ensure that only authorized users can access specific functionality:

« REST APIs: The Handling Report API and PathFinder API are currently accessible without authentica-
tion.

e Web Interfaces: The booking, tracking, and handling interfaces do not implement user authentication or
role-based access control.

Data Privacy Considerations The application handles cargo tracking data, which may be considered
sensitive in a real-world scenario:

e« Database Security: Database credentials are stored in configuration files with default values
(“usr”/“pwd”)'

e No Data Encryption: The application does not implement encryption for sensitive data at rest or in
transit.

Vulnerability Management The application uses Bean Validation for input validation, which provides some
protection against malicious input:

e Validation Annotations: The HandlingReport class uses annotations like @NotBlank and @Size to
validate input fields.

e Validation Errors: The REST configuration is set up to return validation errors to clients when invalid
data is submitted.

¢ Incomplete Validation: There are TODO comments in the code indicating that more thorough validation
(using regular expressions) is needed.

Authentication and Authorization Mechanisms Information not available: The current implementation
does not include authentication or authorization mechanisms.

Automatically generated by QuantalQ 25 of 26 April 6, 2025

https://www.quantalq.com

License and Legal Information

Software Licensing

The Eclipse Cargo Tracker is open source software licensed under the Eclipse Public License 2.0 (EPL-2.0).
The full license text can be found in the LICENSE.md file in the repository.

Contribution Guidelines
Contributions to the Eclipse Cargo Tracker project are welcome. Contributors should follow these guidelines:

1. Code of Conduct: All contributors are expected to adhere to the Eclipse Code of Conduct.
2. Pull Requests: Contributions should be submitted as pull requests to the main repository.
3. Testing: All contributions should include appropriate tests.

4. Documentation: Changes should be documented appropriately.

5. Licensing: All contributions must be licensed under the EPL-2.0.

For more detailed information, see the CONTRIBUTING.md file in the repository.

Copyright Notices
Copyright (¢) 2020, 2022 Eclipse Foundation.

This program and the accompanying materials are made available under the terms of the Eclipse Public License
v. 2.0, which is available at http://www.eclipse.org/legal /epl-2.0.

Appendix
References

o Eclipse Cargo Tracker: https://eclipse-eedj.github.io/cargotracker/
o Domain-Driven Design: https://domainlanguage.com/ddd/

o Jakarta EE: https://jakarta.ee/

e Security Analysis Documentation

o Interface Specifications Documentation

e Use Cases Documentation

e Testing Strategy Documentation

o Consolidated Glossary

List of Illustrations

1. Cargo Tracker Architecture Overview - Shows the layered architecture of the application
2. Cargo Tracker Testing Strategy - Shows the testing approach for different layers of the application
3. Database Schema - Shows the entity relationships in the application

Additional Resources and Further Reading

e Books:
— Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans
— Implementing Domain-Driven Design by Vaughn Vernon
— Patterns of Enterprise Application Architecture by Martin Fowler
— Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf
¢ Online Resources:
— Jakarta EE Documentation: https://jakarta.ce/specifications/
— Domain-Driven Design Community: https://dddcommunity.org/
— Microservices.io: https://microservices.io/
— Martin Fowler’s Blog: https://martinfowler.com/
¢ Related Projects:
— Eclipse MicroProfile: https://microprofile.io/
— Jakarta NoSQL: https://jakarta.ee/specifications/nosql/

Automatically generated by QuantalQ 26 of 26 April 6, 2025

https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/LICENSE.pdf
https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/CONTRIBUTING.pdf
https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/QQ_SD_Doc_Security_Analysis.pdf
https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/QQ_SD_Doc_Interface_Specifications.pdf
https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/QQ_SD_Doc_Use_Cases.pdf
https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/QQ_HL_Doc_TestingStrategy.pdf
https://quantalq.com/wp-content/uploads/2025/04/QQ_Documentation_githubcom_eclipse-ee4__cargotracker/QQ_SD_Doc_Glossary.pdf
https://www.quantalq.com

— Eclipse JKube: https://www.eclipse.org/jkube/

Automatically generated by QuantalQ 27 of 26 April 6, 2025

https://www.quantalq.com

	Eclipse Cargo Tracker - Applied Domain-Driven Design Blueprints for Jakarta EE
	Introduction
	Overview
	Purpose of the Software
	Scope
	Target Audience
	Glossary

	Getting Started
	Installation Guide
	System Requirements
	Quick Start / First Run
	Prerequisites

	Architecture and Design Overview
	System Architecture

	User Guide
	Features Overview
	User Interface Guide
	Step-by-Step Tutorials
	Usage Scenarios / Use Cases
	Troubleshooting Common Issues

	Developer Guide
	Codebase Overview
	Folder Structure & Key Components
	Installation for Development
	Build and Deployment Process
	Coding Standards and Conventions
	API Documentation
	Database Schema and Interaction

	Testing
	Testing Strategy Overview
	Types of Tests
	Running Tests Locally
	Continuous Integration & Testing
	Known Issues and Test Results

	Configuration and Deployment
	Configuration Management
	Deployment Guide
	Scaling Considerations
	Backup and Restore Procedures

	Integration and APIs
	API Endpoints Documentation
	External Integrations and Dependencies
	Authentication and Authorization
	Webhooks and Callback Interfaces
	Data Exchange Formats

	Security
	Security Assets Inventory
	Security Guidelines

	License and Legal Information
	Software Licensing
	Contribution Guidelines
	Copyright Notices

	Appendix
	References
	List of Illustrations
	Additional Resources and Further Reading

